

9 High-Level Language

High thoughts need a high language.

—Aristophanes (448–380 BC)

All the hardware and software systems presented so far in the book were low-

level, meaning that humans are not expected to interact with them directly. In this

chapter we present a high-level language, called Jack, designed to enable human

programmers write high-level programs. Jack is a simple object-based language.

It has the basic features and flavor of modern languages like Java and C#, with a

much simpler syntax and no support for inheritance. In spite of this simplicity, Jack

is a general-purpose language that can be used to create numerous applications. In

particular, it lends itself nicely to simple interactive games like Snake, Tetris, and

Pong—a program whose complete Jack code is included in the book’s software suite.

The introduction of Jack marks the beginning of the end of our journey. In chap-

ters 10 and 11 we will write a compiler that translates Jack programs into VM code,

and in chapter 12 we will develop a simple operating system for the Jack/Hack plat-

form, written in Jack. This will complete the computer’s construction. With that in

mind, it’s important to say at the outset that the goal of this chapter is not to turn

you into a Jack programmer. Instead, our hidden agenda is to prepare you to de-

velop the compiler and operating system that lie ahead.

If you have any experience with a modern object-oriented programming language,

you will immediately feel at home with Jack. Therefore, the Background section

starts the chapter with some typical programming examples, and the Specification

section proceeds with a full functional description of the language and its standard

library. The Implementation section gives some screen shots of typical Jack appli-

cations and offers general guidelines on how to write similar programs over the Hack

platform. The final Project section provides additional details about compiling and

debugging Jack programs.

All the programs shown in the chapter can be compiled by the Jack compiler sup-

plied with the book. The resulting VM code can then run as is on the supplied

VM emulator. Alternatively, one can further translate the compiled VM code into

binary code, using the VM translator and the assembler built in chapters 7–8 and 6,

respectively. The resulting machine code can then be executed as is on the hardware

platform that we built in chapters 1–5.

It’s important to reiterate that in and by itself, Jack is a rather uninteresting and

simple-minded language. However, this simplicity has a purpose. First, you can learn

(and unlearn) Jack very quickly—in about an hour. Second, the Jack language was

carefully planned to lend itself nicely to simple compilation techniques. As a result,

one can write an elegant Jack compiler with relative ease, as we will do in chapters

10 and 11. In other words, the deliberately simple structure of Jack is designed

to help uncover the software engineering principles underlying modern languages

like Java and C#. Rather than taking the compilers and run-time environments of

these languages for granted, we will build a Jack compiler and a run-time environ-

ment ourselves, beginning in the next chapter. For now, let’s take Jack out of the

box.

9.1 Background

Jack is mostly self-explanatory. Therefore, we defer the language specification to

the next section, starting with some examples. We begin with the inevitable Hello

World program. The second example illustrates procedural programming and array

processing. The third example illustrates how the basic language can be extended

with abstract data types. The fourth example illustrates a linked list implementation

using the language’s object handling capabilities.

9.1.1 Example 1: Hello World

When we tell the Jack run-time environment to run a given program, execution al-

ways starts with the Main.main function. Thus, each Jack program must include at

least one class named Main, and this class must include at least one function named

Main.main. This convention is illustrated in figure 9.1.

Jack is equipped with a standard library whose complete API is given in sec-

tion 9.2.7. This library extends the basic language with various abstractions and

services such as arrays, strings, mathematical functions, memory management, and

input/output functions. Two such functions are invoked by the program in figure

174 Chapter 9

9.1, effecting the ‘‘Hello world’’ printout. The program also demonstrates the three

comment formats supported by Jack.

9.1.2 Example 2: Procedural Programming and Array Handling

Jack is equipped with typical language constructs for procedural programming.

It also includes basic commands for declaring and manipulating arrays. Figure 9.2

illustrates both of these features, in the context of inputting and computing the

average of a series of numbers.

Jack programs declare and construct arrays using the built-in Array class, which

is part of the standard Jack library. Note that Jack arrays are not typed and can

include anything—integers, objects, and so forth.

9.1.3 Example 3: Abstract Data Types

Every programming language has a fixed set of primitive data types, of which Jack

supports three: int, char, and boolean. Programmers can extend this basic reper-

toire by creating new classes that represent abstract data types, as needed. For ex-

ample, suppose we wish to endow Jack with the ability to handle rational numbers,

namely, objects of the form n/m where n and m are integers. This can be done by

creating a stand-alone class, designed to provide a fraction abstraction for Jack pro-

grams. Let us call this class Fraction.

Defining a Class Interface A reasonable way to get started is to specify the set of

properties and services expected from a fraction abstraction. One such Application

Program Interface (API), is given in figure 9.3a.

/** Hello World program. */

class Main {

function void main() {

/* Prints some text using the standard library. */

do Output.printString("Hello World");

do Output.println(); // New line

return;

}

}

Figure 9.1 Hello World.

175 High-Level Language

In Jack, operations on the current object (referred to as this) are represented by

methods, whereas class-level operations (equivalent to static methods in Java) are

represented by functions. Operations that create new objects are called constructors.

Using Classes APIs mean different things to different people. If you are the

programmer who has to implement the fraction class, you can view its API as a con-

tract that must be implemented, one way or another. Alternatively, if you are a

programmer who needs to use fractions in your work, you can view the API as a

documentation of a fraction server, designed to generate fraction objects and supply

fraction-related operations. Taking this latter view, consider the Jack code listed in

figure 9.3b.

Figure 9.3b illustrates an important software engineering principle: Users of any

given abstraction don’t have to know anything about its underlying implementation.

/** Computes the average of a sequence of integers. */

class Main {

function void main() {

var Array a;

var int length;

var int i, sum;

let length = Keyboard.readInt("How many numbers? ");

let a = Array.new(length); // Constructs the array

let i = 0;

while (i < length) {

let a[i] = Keyboard.readInt("Enter the next number: ");

let sum = sum + a[i];

let i = i + 1;

}

do Output.printString("The average is: ");

do Output.printInt(sum / length);

do Output.println();

return;

}

}

Figure 9.2 Procedural programming and array handling.

176 Chapter 9

// A Fraction is an object representation of n/m where n and m are integers.

field int numerator, denominator // Fraction object properties

constructor Fraction new(int a, int b) // Returns a new Fraction object

method int getNumerator() // Returns the numerator of this

// fraction

method int getDenominator() // Returns the denominator of this

// fraction

method Fraction plus(Fraction other) // Returns the sum of this fraction

// and another fraction, as a

// fraction

method void print() // Prints this fraction in the

// format "numerator/denominator"

// Additional fraction-related services are specified here, as needed.

Figure 9.3a Fraction class API.

// Computes the sum of 2/3 and 1/5.

class Main {

function void main() {

var Fraction a, b, c;

let a = Fraction.new(2,3);

let b = Fraction.new(1,5);

let c = a.plus(b); // Compute c = a + b

do c.print(); // Should print the text "13/15"

return;

}

}

Figure 9.3b Using the Fraction abstraction.

177 High-Level Language

/** Provides the Fraction type and related services. */

class Fraction {

field int numerator, denominator;

/** Constructs a new (and reduced) fraction from given

* numerator and denominator. */

constructor Fraction new(int a, int b) {

let numerator = a; let denominator = b;

do reduce(); // If a/b is not reduced, reduce it

return this;

}

/** Reduces this fraction. */

method void reduce() {

var int g;

let g = Fraction.gcd(numerator, denominator);

if (g > 1) {

let numerator = numerator / g;

let denominator = denominator / g; }

return;

}

/** Computes the greatest common denominator of a and b. */

function int gcd(int a, int b){

var int r;

while (~(b = 0)) { // Apply Euclid’s algorithm.

let r = a - (b * (a / b)); // r=remainder of a/b

let a = b; let b = r; }

return a;

}

/** Accessors. */

method int getNumerator() { return numerator; }

method int getDenominator() { return denominator; }

Figure 9.3c A possible Fraction class implementation.

178 Chapter 9

Rather, they can be given access only to the abstraction’s interface, or class API, and

then use it as a black box server of abstraction-related operations.

Implementing the Class We now turn to the other player in our story—the pro-

grammer who has to actually implement the fraction abstraction. A possible Jack

implementation is given in figure 9.3c.

Figure 9.3c illustrates the typical Jack program structure: classes, methods, con-

structors, and functions. It also demonstrates all the statement types available in the

language: let, do, if, while, and return.

9.1.4 Example 4: Linked List Implementation

A linked list (or simply list) is a chain of objects, each consisting of a data element

and a reference (pointer) to the rest of the list. Figure 9.4 shows a possible Jack class

implementation of the linked list abstraction. The purpose of this example is to il-

lustrate typical object handling in the Jack language.

/** Returns the sum of this fraction and another one.

method Fraction plus(Fraction other){

var int sum;

let sum = (numerator * other.getDenominator()) +

(other.getNumerator() * denominator());

return Fraction.new(sum, denominator *

other.getDenominator());

}

// More fraction-related methods: minus, times, div, etc.

/** Prints this fraction. */

method void print() {

do Output.printInt(numerator);

do Output.printString("/");

do Output.printInt(denominator);

return;

}

} // Fraction class

Figure 9.3c (continued)

179 High-Level Language

/** The List class provides a linked list abstraction. */

class List {

field int data;

field List next;

/* Creates a new List object. */

constructor List new(int car, List cdr) {

let data = car;

let next = cdr;

return this;

}

/* Disposes this List by recursively disposing its tail. */

method void dispose() {

if (~(next = null)) {

do next.dispose();

}

// Use an OS routine to recycle the memory held by this

// object.

do Memory.deAlloc(this);

return;

}

// More List-related methods come here

} // class List

/* Creates a list holding the numbers (2,3,5).

(this code can appear in any class). */

function void create235() {

var List v;

let v = List.new(5,null);

let v = List.new(2,List.new(3,v));

... // Does something with the list

do v.dispose();

return;

}

Figure 9.4 Object handling in a linked list context.

180 Chapter 9

9.2 The Jack Language Specification

We now turn to a formal and complete description of the Jack language, organized

by its syntactic elements, program structure, variables, expressions, and statements.

This language specification should be viewed as a technical reference, to be consulted

as needed.

9.2.1 Syntactic Elements

A Jack program is a sequence of tokens separated by an arbitrary amount of white

space and comments, which are ignored. Tokens can be symbols, reserved words,

constants, and identifiers, as listed in figure 9.5.

9.2.2 Program Structure

The basic programming unit in Jack is a class. Each class resides in a separate file

and can be compiled separately. Class declarations have the following format:

class name {

Field and static variable declarations // Must precede subroutine declarations.

Subroutine declarations // Constructor, method and function declarations.

}

Each class declaration specifies a name through which the class can be globally

accessed. Next comes a sequence of zero or more field and static variable declara-

tions. Then comes a sequence of one or more subroutine declarations, each defining a

method, a function, or a constructor. Methods ‘‘belong to’’ objects and provide their

functionality, while functions ‘‘belong to’’ the class in general and are not associated

with a particular object (similar to Java’s static methods). A constructor ‘‘belongs to’’

the class and, when called, generates object instances of this class.

All subroutine declarations have the following format:

subroutine type name (parameter-list) {

local variable declarations

statements

}

where subroutine is either constructor, method, or function. Each subroutine has

a name through which it can be accessed, and a type describing the value returned by

181 High-Level Language

White

space

and

comments

Space characters, newline characters, and comments are ignored.

The following comment formats are supported:

// Comment to end of line

/* Comment until closing */

/** API documentation comment */

Symbols () Used for grouping arithmetic expressions

and for enclosing parameter-lists and argument-lists

[] Used for array indexing

{ } Used for grouping program units and statements

, Variable list separator

; Statement terminator

= Assignment and comparison operator

. Class membership

+ - * / & | ~ < > Operators

Reserved

words

class, constructor, method, function Program components

int, boolean, char, void Primitive types

var, static, field Variable declarations

let, do, if, else, while, return Statements

true, false, null Constant values

this Object reference

Constants Integer constants must be positive and in standard decimal notation, e.g., 1984.

Negative integers like -13 are not constants but rather expressions consisting of a

unary minus operator applied to an integer constant.

String constants are enclosed within two quote (‘‘) characters and may contain any

characters except newline or double-quote. (These characters are supplied by the

functions String.newLine() and String.doubleQuote() from the standard

library.)

Boolean constants can be true or false.

The constant null signifies a null reference.

Identifiers Identifiers are composed from arbitrarily long sequences of letters

(A-Z, a-z), digits (0-9), and ‘‘_’’. The first character must be a letter or ‘‘_’’.

The language is case sensitive. Thus x and X are treated as different identifiers.

Figure 9.5 Jack syntactic elements.

182 Chapter 9

the subroutine. If the subroutine returns no value, the type is declared void; other-

wise, it can be any of the primitive data types supported by the language, or any of

the class types supplied by the standard library, or any of the class types supplied by

other classes in the application. Constructors may have arbitrary names, but they

must return an object of the class type. Therefore the type of a constructor must

always be the name of the class to which it belongs.

Following its header specification, the subroutine declaration contains a sequence

of zero or more local variable declarations, then a sequence of zero or more state-

ments.

As in Java, a Jack program is a collection of one or more classes. One class must

be named Main, and this class must include at least one function named main. When

instructed to execute a Jack program that resides in some directory, the Jack run-

time environment will automatically start running the Main.main function.

9.2.3 Variables

Variables in Jack must be explicitly declared before they are used. There are four

kinds of variables: field, static, local, and parameter variables, each with its asso-

ciated scope. Variables must be typed.

Data Types Each variable can assume either a primitive data type (int, char,

boolean), as predefined in the Jack language specification, or an object type, which

is the name of a class. The class that implements this type can be either part of the

Jack standard library (e.g., String or Array), or it may be any other class residing

in the program directory.

Primitive Types Jack features three primitive data types:

m int: 16-bit 2’s complement

m boolean: false and true

m char: unicode character

Variables of primitive types are allocated to memory when they are declared. For

example, the declarations var int age; var boolean gender; cause the compiler

to create the variables age and gender and to allocate memory space to them.

Object Types Every class defines an object type. As in Java, the declaration of an

object variable only causes the creation of a reference variable (pointer). Memory

183 High-Level Language

for storing the object itself is allocated later, if and when the programmer actually

constructs the object by calling a constructor. Figure 9.6 gives an example.

The Jack standard library provides two built-in object types (classes) that play a

role in the language syntax: Array and String.

Arrays Arrays are declared using a built-in class called Array. Arrays are

one-dimensional and the first index is always 0 (multi-dimensional arrays may be

obtained as arrays of arrays). Array entries do not have a declared type, and different

entries in the same array may have different types. The declaration of an array only

creates a reference, while the actual construction of the array is done by calling the

Array.new(length) constructor. Access to array elements is done using the a[j]

notation. Figure 9.2 illustrates working with arrays.

Strings Strings are declared using a built-in class called String. The Jack compiler

recognizes the syntax "xxx" and treats it as the contents of some String object. The

contents of String objects can be accessed and modified using the methods of the

String class, as documented in its API. Example:

var String s;

var char c;

...

let s = "Hello World";

let c = s.charAt(6); // "W"

// This code assumes the existence of Car and Employee classes.

// Car objects have model and licensePlate fields.

// Employee objects have name and Car fields.

var Employee e, f; // Creates variables e, f that contain null references

var Car c; // Creates a variable c that contains a null reference

...

let c = Car.new("Jaguar","007") // Constructs a new Car object

let e = Employee.new("Bond",c) // Constructs a new Employee object

// At this point c and e hold the base addresses of the memory segments

// allocated to the two objects.

let f = e; // Only the reference is copied - no new object is constructed.

Figure 9.6 Object types (example).

184 Chapter 9

Type Conversions The Jack language is weakly typed. The language specifica-

tion does not define the results of attempted assignment or conversion from one type

to another, and different Jack compilers may allow or forbid them. (This under-

specification is intentional, allowing the construction of minimal Jack compilers that

ignore typing issues.)

Having said that, all Jack compilers are expected to allow, and automatically per-

form, the following assignments:

m Characters and integers are automatically converted into each other as needed,

according to the Unicode specification. Example:

var char c; var String s;

let c = 33; // 'A'

// Equivalently:

let s = "A"; let c = s.charAt(0);

m An integer can be assigned to a reference variable (of any object type), in which

case it is treated as an address in memory. Example:

var Array a;

let a = 5000;

let a[100] = 77; // Memory address 5100 is set to 77

m An object variable (whose type is a class name) may be converted into an Array

variable, and vice versa. The conversion allows accessing the object fields as array

entries, and vice versa. Example:

// Assume that class Complex has two int fields: re and im.

var Complex c; var Array a;

let a = Array.new(2);

let a[0] = 7; let a[1] = 8;

let c = a; // c==Complex(7,8)

Variable Kinds and Scope Jack features four kinds of variables. Static variables are

defined at the class level and are shared by all the objects derived from the class. For

example, a BankAccount class may have a totalBalance static variable holding

the sum of balances of all the bank accounts, each account being an object derived

from the BankAccount class. Field variables are used to define the properties of

individual objects of the class, for example, account owner and balance. Local

variables, used by subroutines, exist only as long as the subroutine is running, and

185 High-Level Language

parameter variables are used to pass arguments to subroutines. For example, our

BankAccount class may include the method signature method void transfer-

(BankAccount from, int sum), declaring the two parameters from and sum. Thus,

if joeAccount and janeAccount were two variables of type BankAccount, the

command joeAccount.transfer(janeAccount,100) will effect a transfer of 100

from Jane to Joe.

Figure 9.7 gives a formal description of all the variable kinds supported by the

Jack language. The scope of a variable is the region in the program in which the

variable name is recognized.

Variable kind Definition/Description Declared in Scope

Static variables static type name1, name2, ...;

Only one copy of each static variable

exists, and this copy is shared by all the

object instances of the class (like private

static variables in Java)

Class

declaration.

The class in

which they are

declared.

Field variables field type name1, name2, ...;

Every object instance of the class has a

private copy of the field variables (like

private object variables in Java)

Class

declaration.

The class in

which they are

declared, except

for functions.

Local variables var type name1, name2, ...;

Local variables are allocated on the stack

when the subroutine is called and freed

when it returns (like local variables in

Java)

Subroutine

declaration.

The subroutine

in which they

are declared.

Parameter

variables

type name1, name2, ...

Used to specify inputs of subroutines, for

example:

function void drive (Car c, int miles)

Appear in

parameter lists

as part of

subroutine

declarations.

The subroutine

in which they

are declared.

Figure 9.7 Variable kinds in the Jack language (throughout the table, subroutine is either a
function, a method, or a constructor).

186 Chapter 9

9.2.4 Statements

The Jack language features five generic statements. They are defined and described in

figure 9.8.

9.2.5 Expressions

Jack expressions are defined recursively according to the rules given in figure

9.9.

Statement Syntax Description

let let variable = expression;

or

let variable [expression] =

expression;

An assignment operation (where

variable is either single-valued or

an array). The variable kind may

be static, local, field, or parameter.

if if (expression) {

statements

}

else {

statements

}

Typical if statement with an

optional else clause.

The curly brackets are mandatory

even if statements is a single

statement.

while while (expression) {

statements

}

Typical while statement.

The curly brackets are mandatory

even if statements is a single

statement.

do do function-or-method-call;

Used to call a function or a

method for its effect, ignoring the

returned value.

return Return expression;

or

return;

Used to return a value from a

subroutine. The second form must

be used by functions and methods

that return a void value.

Constructors must return the

expression this.

Figure 9.8 Jack statements.

187 High-Level Language

Operator Priority and Order of Evaluation Operator priority is not defined by the

language, except that expressions in parentheses are evaluated first. Thus an expres-

sion like 2+3*4 may yield either 20 or 14, whereas 2+(3*4) is guaranteed to yield

14. The need to use parentheses in such expressions makes Jack programming a bit

cumbersome. However, the lack of formal operator priority is intentional, since it

simplifies the writing of Jack compilers. Of course, different language implementa-

tions (compilers) can specify an operator priority and add it to the language docu-

mentation, if so desired.

9.2.6 Subroutine Calls

Subroutine calls invoke methods, functions, and constructors for their effect, using

the general syntax subroutineName(argument-list). The number and type of the ar-

guments must match those of the subroutine’s parameters, as defined in its declara-

tion. The parentheses must appear even if the argument list is empty. Each argument

may be an expression of unlimited complexity. For example, the Math class, which

A Jack expression is one of the following:

m A constant;

m A variable name in scope (the variable may be static, field, local, or

parameter);

m The this keyword, denoting the current object (cannot be used in functions);

m An array element using the syntax name[expression], where name is a variable

name of type Array in scope;

m A subroutine call that returns a non-void type;

m An expression prefixed by one of the unary operators - or ~:

- expression: arithmetic negation;

~ expression: boolean negation (bit-wise for integers);

m An expression of the form expression operator expression where operator is

one of the following binary operators:

+ - * / Integer arithmetic operators;

& | Boolean And and Boolean Or (bit-wise for integers) operators;

< > = Comparison operators;

m (expression): An expression in parentheses.

Figure 9.9 Jack expressions.

188 Chapter 9

is part of Jack’s standard library, contains a square root function whose declaration

is function int sqrt(int n). Such a function can be invoked using calls like

Math.sqrt(17), or Math.sqrt((a * Math.sqrt(c - 17) + 3), and so on.

Within a class, methods are called using the syntax methodName(argument-

list), while functions and constructors must be called using their full names, namely,

className.subroutineName(argument-list). Outside a class, the class functions and

constructors are also called using their full names, while methods are called using the

syntax varName.methodName(argument-list), where varName is a previously defined

object variable. Figure 9.10 gives some examples.

Object Construction and Disposal Object construction is a two-stage affair. When

a program declares a variable of some object type, only a reference (pointer) vari-

able is created and allocated memory. To complete the object’s construction (if so

desired), the program must call a constructor from the object’s class. Thus, a class

that implements a type (e.g., Fraction from figure 9.3c) must contain at least

one constructor. Constructors may have arbitrary names, but it is customary to

class Foo {

// Some subroutine declarations - code omitted

...

method void f() {

var Bar b; // Declares a local variable of class type Bar

var int i; // Declares a local variable of primitive type int

...

do g(5,7) // Calls method g of class Foo (on this object)

do Foo.p(2) // Calls function p of class Foo

do Bar.h(3) // Calls function h of class Bar

let b = Bar.r(4); // Calls constructor or function r of class Bar

do b.q() // Calls method q of class Bar (on object b)

Let i = w(b.s(3), Foo.t()) // Calls method w on this object,

// method s on object b and function

// or constructor t of class Foo

...

}

}

Figure 9.10 Subroutine call examples.

189 High-Level Language

call one of them new. Constructors are called just like any other class function using

the format:

let varName ¼ className.constructorName(parameter-list);

For example, let c = Circle.new(x,y,50) where x, y, and 50 are the screen

location of the circle’s center and its radius. When a constructor is called, the com-

piler requests the operating system to allocate enough memory space to hold the new

object in memory. The OS returns the base address of the allocated memory seg-

ment, and the compiler assigns it to this (in the circle example, the value of this is

assigned to c). Next, the constructed object is typically initialized to some valid state,

effected by the Jack commands found in the constructor’s body.

When an object is no longer needed in a program, it can be disposed. In par-

ticular, objects can be de-allocated from memory and their space reclaimed using

the Memory.deAlloc(object) function from the standard library. Convention calls

for every class to contain a dispose() method that properly encapsulates this de-

allocation. For example, see figure 9.4.

9.2.7 The Jack Standard Library

The Jack language comes with a collection of built-in classes that extend the

language’s capabilities. This standard library, which can also be viewed as a basic

operating system, must be provided in every Jack language implementation. The

standard library includes the following classes, all implemented in Jack:

m Math: provides basic mathematical operations;

m String: implements the String type and string-related operations;

m Array: implements the Array type and array-related operations;

m Output: handles text output to the screen;

m Screen: handles graphic output to the screen;

m Keyboard: handles user input from the keyboard;

m Memory: handles memory operations;

m Sys: provides some execution-related services.

Math This class enables various mathematical operations.

m function void init(): for internal use only.

m function int abs(int x): returns the absolute value of x.

190 Chapter 9

m function int multiply(int x, int y): returns the product of x and y.

m function int divide(int x, int y): returns the integer part of x/y.

m function int min(int x, int y): returns the minimum of x and y.

m function int max(int x, int y): returns the maximum of x and y.

m function int sqrt(int x): returns the integer part of the square root of x.

String This class implements the String data type and various string-related

operations.

m constructor String new(int maxLength): constructs a new empty string (of length

zero) that can contain at most maxLength characters;

m method void dispose(): disposes this string;

m method int length(): returns the length of this string;

m method char charAt(int j): returns the character at location j of this string;

m method void setCharAt(int j, char c): sets the j-th element of this string to c;

m method String appendChar(char c): appends c to this string and returns this

string;

m method void eraseLastChar(): erases the last character from this string;

m method int intValue(): returns the integer value of this string (or of the string

prefix until a non-digit character is detected);

m method void setInt(int j): sets this string to hold a representation of j;

m function char backSpace(): returns the backspace character;

m function char doubleQuote(): returns the double quote (‘‘) character;

m function char newLine(): returns the newline character.

Array This class enables the construction and disposal of arrays.

m function Array new(int size): constructs a new array of the given size;

m method void dispose(): disposes this array.

Output This class allows writing text on the screen.

m function void init(): for internal use only;

m function void moveCursor(int i, int j): moves the cursor to the j-th column of the

i-th row, and erases the character displayed there;

191 High-Level Language

m function void printChar(char c): prints c at the cursor location and advances the

cursor one column forward;

m function void printString(String s): prints s starting at the cursor location and

advances the cursor appropriately;

m function void printInt(int i): prints i starting at the cursor location and advances

the cursor appropriately;

m function void println(): advances the cursor to the beginning of the next line;

m function void backSpace(): moves the cursor one column back.

Screen This class allows drawing graphics on the screen. Column indices start at 0

and are left-to-right. Row indices start at 0 and are top-to-bottom. The screen size is

hardware-dependant (in the Hack platform: 256 rows by 512 columns).

m function void init(): for internal use only;

m function void clearScreen(): erases the entire screen;

m function void setColor(boolean b): sets a color (white ¼ false, black ¼ true) to

be used for all further drawXXX commands;

m function void drawPixel(int x, int y): draws the (x,y) pixel;

m function void drawLine(int x1, int y1, int x2, int y2): draws a line from pixel

(x1,y1) to pixel (x2,y2);

m function void drawRectangle(int x1, int y1, int x2, int y2): draws a filled rec-

tangle whose top left corner is (x1,y1) and bottom right corner is (x2,y2);

m function void drawCircle(int x, int y, int r): draws a filled circle of radius

r <¼ 181 around (x,y).

Keyboard This class allows reading inputs from a standard keyboard.

m function void init(): for internal use only;

m function char keyPressed(): returns the character of the currently pressed key

on the keyboard; if no key is currently pressed, returns 0;

m function char readChar(): waits until a key is pressed on the keyboard and

released, then echoes the key to the screen and returns the character of the pressed key;

m function String readLine(String message): prints the message on the screen,

reads the line (text until a newline character is detected) from the keyboard, echoes

the line to the screen, and returns its value. This function also handles user back-

spaces;

192 Chapter 9

m function int readInt(String message): prints the message on the screen, reads the

line (text until a newline character is detected) from the keyboard, echoes the line to

the screen, and returns its integer value (until the first nondigit character in the line is

detected). This function also handles user backspaces.

Memory This class allows direct access to the main memory of the host platform.

m function void init(): for internal use only;

m function int peek(int address): returns the value of the mainmemory at this address;

m function void poke(int address, int value): sets the contents of the main memory

at this address to value;

m function Array alloc(int size): finds and allocates from the heap a memory block

of the specified size and returns a reference to its base address;

m function void deAlloc(Array o): De-allocates the given object and frees its

memory space.

Sys This class supports some execution-related services.

m function void init(): calls the init functions of the other OS classes and then

calls the Main.main() function. For internal use only;

m function void halt(): halts the program execution;

m function void error(int errorCode): prints the error code on the screen and halts;

m function void wait(int duration): waits approximately duration milliseconds and

returns.

9.3 Writing Jack Applications

Jack is a general-purpose programming language that can be implemented over dif-

ferent hardware platforms. In the next two chapters we will develop a Jack compiler

that ultimately generates binary Hack code, and thus it is natural to discuss Jack

applications in the Hack context. This section illustrates briefly three such applica-

tions and provides general guidelines about application development on the Jack-

Hack platform.

Examples Four sample applications are illustrated in figure 9.11. The Pong

game, whose Jack code is supplied with the book, provides a good illustration of

Jack programming over the Hack platform. The Pong code is not trivial, requiring

193 High-Level Language

several hundred lines of Jack code organized in several classes. Further, the program

has to carry out some nontrivial mathematical calculations in order to compute the

direction of the ball’s movements. The program must also animate the movement of

graphical objects on the screen, requiring extensive use of the language’s graphics

drawing services. And, in order to do all of the above quickly, the program must be

efficient, meaning that it has to do as few real-time calculations and screen drawing

operations as possible.

Application Design and Implementation The development of Jack applications

over a hardware platform like Hack requires careful planning (as always). First, the

application designer must consider the physical limitations of the hardware, and

plan accordingly. For example, the dimensions of the computer’s screen limit the size

of the graphical images that the program can handle. Likewise, one must consider

the language’s range of input/output commands and the platform’s execution speed,

to gain a realistic expectation of what can and cannot be done.

Figure 9.11 Screen shots of sample Jack applications, running on the Hack computer.
Hangman, Maze, Pong, and a simple data processing program.

194 Chapter 9

As usual, the design process normally starts with a conceptual description of the

application’s behavior. In the case of graphical and interactive programs, this may

take the form of hand-written drawings of typical screens. In simple applications,

one can proceed to implementation using procedural programming. In more com-

plex tasks, it is advisable to first create an object-based design of the application.

This entails the identification of classes, fields, and subroutines, possibly leading to

the creation of some API document (e.g., figure 9.3a).

Next, one can proceed to implement the design in Jack and compile the class files

using a Jack compiler. The testing and debugging of the code generated by the com-

piler depend on the details of the target platform. In the Hack platform supplied with

the book, testing and debugging are normally done using the supplied VM emulator.

Alternatively, one can translate the Jack program all the way to binary code and run

it directly on the Hack hardware, or on the CPU emulator supplied with the book.

The Jack OS Jack programs make an extensive use of the various abstractions

and services supplied by the language’s standard library, also called the Jack OS.

This OS is itself implemented in Jack, and thus its executable version is a set of

compiled .vm files—just like the user program (following compilation). Therefore,

before running any Jack program, you must first copy into the program directory the

.vm files comprising the Jack OS (supplied with the book). The chain of command

is as follows: The computer is programmed to first run the Sys.init. This OS

function, in turn, is programmed to start running your Main.main function. This

function will then call various subroutines from both the user program and from the

OS, and so on.

Although the standard library of the Jack language can be extended, readers will

perhaps want to hone their programming skills elsewhere. After all, we don’t expect

Jack to be part of your life beyond this book. Therefore, it is best to view the Jack/

Hack platform as a given environment and make the best out of it. That’s pre-

cisely what programmers do when they write software for embedded devices and

dedicated processors that operate in restricted environments. Instead of viewing the

constrains imposed by the host platform as a problem, professionals view it as an

opportunity to display their resourcefulness and ingenuity. That’s why some of the

best programmers in the trade were first trained on primitive computers.

9.4 Perspective

Jack is an ‘‘object-based’’ language, meaning that it supports objects and classes, but

not inheritance. In this respect it is located somewhere between procedural languages

195 High-Level Language

like Pascal or C and object-oriented languages like Java or Cþþ. Jack is certainly more

‘‘clunky’’ than any of these industrial-strength programming languages. However,

its basic syntax and semantics are not very different from those of modern languages.

Some features of the Jack language leave much to be desired. For example, its

primitive type system is, well, rather primitive. Moreover, it is a weakly typed lan-

guage, meaning that type conformity in assignments and operations is not strictly

enforced. Also, one may wonder why the Jack syntax includes keywords like do and

let, why curly brackets must be used even in single statement blocks, and why the

language does not enforce a formal operator priority.

Well, all these deviations from normal programming languages were introduced

into Jack with one purpose: to allow the development of elegant and simple Jack

compilers, as we will do in the next two chapters. For example, when parsing a

statement (in any language), it is much easier to handle the code if the first token

of the statement indicates which statement we’re in. That’s why the Jack syntax

includes the do and let keywords, and so on. Thus, although Jack’s simplicity may

be a nuisance when writing a Jack application, you will probably be quite grateful for

it while writing the Jack compiler in the next two chapters.

Most modern languages are deployed with standard libraries, and so is Jack. As in

Java and C#, this library can also be viewed as an interface to a simple and por-

table operating system. In the Jack-Hack platform, the services supplied by this OS

are extremely minimal. They include no concurrency to support multi-threading or

multi-processing, no file system to support permanent storage, and no communica-

tion. At the same time, the Jack OS provides some classical OS services like graphic

and textual I/O (in very basic forms), standard implementation of strings, and stan-

dard memory allocation and de-allocation. Additionally, the Jack OS implements

various mathematical functions, including multiplication and division, normally im-

plemented in hardware. We return to these issues in chapter 12, where we will build

this simple operating system as the last module in our computer system.

9.5 Project

Objective The hidden agenda of this project is to get acquainted with the Jack lan-

guage, for two purposes: writing the Jack compiler in Projects 10 and 11, and writing

the Jack operating system in Project 12.

Contract Adopt or invent an application idea, for example, a simple computer

game or some other interactive program. Then design and build the application.

196 Chapter 9

Resources You will need three tools: the Jack compiler, to translate your program

into a set of .vm files, the VM emulator, to run and test your translated program,

and the Jack Operating System.

The Jack OS The Jack Operating System is available as a set of .vm files. These

files constitute an implementation of the standard library of the Jack programming

language. In order for any Jack program to execute properly, the compiled .vm files

of the program must reside in a directory that also contains all the .vm files of the

Jack OS. When an OS-oriented error is detected by the Jack OS, it displays a nu-

meric error code (rather than text, which wastes precious memory space). A list of all

the currently supported error codes and their textual descriptions can be found in the

file projects/09/OSerrors.txt.

Compiling and Running a Jack Program

0. Each program must be stored in a separate directory, say Xxx. Start by creating

this directory, then copy all the files from tools/OS into it.

1. Write your Jack program—a set of one or more Jack classes—each stored in a

separate ClassName.jack text file. Put all these .jack files in the Xxx directory.

2. Compile your program using the supplied Jack compiler. This is best done by

applying the compiler to the name of the program directory (Xxx). This will cause the

compiler to translate all the .jack classes found in the directory into corresponding

.vm files. If a compilation error is reported, debug the program and recompile Xxx

until no error messages are issued.

3. At this point the program directory should contain three sets of files: (i) your

source .jack files, (ii) the compiled .vm files, one for each of your .jack class files,

and (iii) additional .vm files, comprising the supplied Jack OS. To test the compiled

program, invoke the VM emulator and load the entire Xxx program directory. Then

run the program. In case of run-time errors or undesired program behavior, fix the

program and go to stage 2.

A Sample Jack Program The book’s software suite includes a complete example

of a Jack application, stored in projects/09/Square. This directory contains the

source Jack code of three classes comprising a simple interactive game.

197 High-Level Language

